Fuzzy Tendency based Time Series Model for Forecasting Server Traffic
نویسندگان
چکیده
For modeling of change of terminal server load, the approach including representation of time series of server parameters in the form of fuzzy time series is used. Further in the article the analysis of fuzzy time series is considered. The model of fuzzy tendencies is offered for terminal server traffic modeling. This model reflects change of the volume of terminal server traffic expressed linguistically, and it is used for its forecasting. The results of the forecast permit to determine linguistically expressed fuzzy tendencies on the basis of the offered model. Keywords— Fuzzy Time Series, Fuzzy Tendency, Fuzzy Neural Network, Forecasting, Terminal Server.
منابع مشابه
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کاملResidual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کاملInterpolating time series based on fuzzy cluster analysis problem
This study proposes the model for interpolating time series to use them to forecast effectively for future. This model is established based on the improved fuzzy clustering analysis problem, which is implemented by the Matlab procedure. The proposed model is illustrated by a data set and tested for many other datasets, especially for 3003 series in M3-Competition data. Comparing to the exist...
متن کاملTime series forecasting using fuzzy techniques
The aim of this contribution is to show the opportunities of applying of fuzzy time series models to predict multiple heterogeneous time series, given at International Time Series Forecasting Competition [http://irafm.osu.cz/cif/main.php]. The dataset of this competition includes 91 time series of different length, time frequencies and behaviour. In this paper the framework (algorithm) of multi...
متن کامل